СПОСОБ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ МЕТАЛЛОВ Российский патент 2006 года по МПК C21D1/09 

Описание патента на изобретение RU2276191C1

Изобретение относится к машиностроению и может быть использовано для поверхностного упрочнения металлов при обработке источниками с высокой концентрацией энергии.

Известен способ поверхностной закалки металлов лучом лазера [1], при котором режим обработки регулируют изменением энергии импульса, длительности его и диаметра пятна, считая, что распределение энергии по пятну близко к равномерному.

Недостатками его следует считать невозможность одновременно реализовать различные стадии теплового воздействия (отжига, закалки и отпуска) в условиях однократного облучения поверхности, сложность взаимоувязки механических характеристик образующихся структур с режимами обработки.

Известен также способ поверхностного упрочнения металлов лазерным лучом путем изменения уровня термического воздействия на обрабатываемую поверхность с переменной отражательной способностью [2].

Недостатками данного способа являются сложность обработки конфигурированных поверхностей и необходимость обеспечения технологического сочетания характеристик красителя с режимами упрочнения.

Задача изобретения - улучшение качества упрочненной поверхности и повышение технологичности обработки.

Технический результат - повышение прочностных характеристик упрочненной поверхности и повышение производительности обработки.

Это достигается тем, что в способе поверхностного упрочнения металлов путем изменения уровня теплового воздействия на обрабатываемую поверхность, включающем локальную закалку сканирующим лазерным лучом, производят поляризацию лазерного луча в полосу с переменной интенсивностью излучения и сканируют вдоль этой полосы, при этом степень поляризации устанавливают согласно принятым условиям теплового воздействия с учетом фиксированной скорости сканирования и последовательно реализуют стадии изотермической выдержки обрабатываемого участка на различных температурных уровнях, а изменение температуры осуществляют с оптимальными для упрочняемого металла скоростями. При этом скорость сканирования назначают экспериментально по величине заданной микротвердости в упрочненных слоях металла, соответствующей закалочному состоянию.

Действительно, согласно закону Малюса, при поляризации лазерного луча удается добиться разной интенсивности светового потока, что обусловливает соответствующее изменение в плотности подводимой энергии по пятну воздействия. При перемещении (сканировании) плоскополяризованного источника световой энергии (лазерного луча) в пределах пятна воздействия металл претерпевает стадии термического превращения в последовательности, соответствующей принятой схеме обработки. Это позволяет получить несколько структурных состояний обрабатываемого металла за один проход лазерного луча, исключив тем самым необходимость проведения отдельных термических операций (например, отдельно отжига, закалки и отпуска) для тех же целей, и повысить производительность обработки.

Таким образом, параметрами обработки следует считать степень поляризации в локальных зонах лазерного луча и последовательность их расположения, определяющих плотность подводимой энергии, а также скорость сканирования лучом, определяющую температурный градиент на поверхности.

На фиг.1 приведена схема обработки, на фиг.2 - зависимость температуры Т на элементе обрабатываемой поверхности от времени t.

Способ осуществляют в следующей последовательности. Определяют область теплового воздействия на обрабатываемой поверхности 1 (фиг.1). Затем на нее фокусируют поляризованный луч лазера 2 в виде сплошной полосы. Степень поляризации Р в пределах пятна воздействия лазерного луча устанавливают согласно принятым условиям теплового воздействия: для достижения максимальной температуры нагрева поверхности при фиксированной скорости V сканирования луча степень поляризации Р приближается к нулю; для минимизации температурного воздействия в тех же условиях Р=1 (плоскополяризованное состояние). Скорость сканирования V назначают эмпирически; критерием при этом может служить величина заданной микротвердости в упрочненных слоях металла, соответствующая закалочному состоянию. Это позволяет производить упрочнение металлов в сыром или отожженном состоянии, при обеспечении характеристик металла, формируемых при объемной закалке. Вследствие различия в интенсивности светового потока по длине луча при заданной скорости его перемещения, в пределах пятна воздействия 3 возникает температурный градиент 4 и в металле последовательно реализуются стадии отжига, закалки и отпуска. Это способствует формированию требуемой микроструктуры (понижает содержание остаточного аустенита), повышает микротвердость и упрощает технологию обработки, в результате которой отпадает необходимость в предварительной подготовке поверхности (отжиге) и последующем отпуске до регламентированной твердости (микротвердости).

Пример. Производят локальное воздействие непрерывным лазерным лучом на поверхность стали 8Х6НФТ при плотности подводимой энергии лазерного луча 1.8 Дж/мм2, скорости сканирования 42.3 мм/с при поляризации луча в полосу длиной 5.0 мм и шириной 0.1 мм со степенью поляризации в направлении сканирования 0.78, 0.44, 0.92 в равных долях от длины пятна воздействия. Коэффициент прироста микротвердости при этом составил 1.52, содержание остаточного аустенита - 16% (при традиционной схеме обработки - 28%). Результаты апробации заявляемого способа приведены в таблице.

Источники информации

1. Сафонов А.Н., Тарасенко В.М., Скоромник В.И. Лазерное термоупрочнение режущего инструмента: Обзорн. информ. - М.: ВНИПИЭИлеспром, 1989. С.52.

2. Зотов Г.А., Памфилов Е.А. Повышение стойкости дереворежущего инструмента. М.: Экология, 1991. С.300.

Похожие патенты RU2276191C1

название год авторы номер документа
СПОСОБ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ И СТАБИЛИЗАЦИИ МАЛОЖЕСТКИХ ИЗДЕЛИЙ 2014
  • Королев Альберт Викторович
  • Королев Андрей Альбертович
  • Курзанова Татьяна Александровна
  • Журавлев Михаил Михайлович
RU2581691C1
Способ роботизированного лазерного упрочнения изделий из штамповой стали 2023
  • Малолетов Александр Васильевич
  • Сатдаров Тимур Рафикович
RU2820138C1
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОЙ ПОВЕРХНОСТИ МЕТАЛЛОВ И ИХ СПЛАВОВ (ВАРИАНТЫ) 2010
  • Тюфтин Анатолий Аркадьевич
  • Чирков Анатолий Михайлович
  • Корякин Даниил Владимирович
  • Щукин Владимир Дмитриевич
RU2445378C2
СПОСОБ УПРОЧНЕНИЯ РАЗДЕЛИТЕЛЬНОГО ШТАМПА 2014
  • Афанасьева Людмила Евгеньевна
  • Барабонова Инна Александровна
  • Барчуков Дмитрий Анатольевич
  • Зубков Николай Семёнович
  • Раткевич Герман Вячеславович
RU2566224C1
Способ обработки кромок многоканальным лазером 2017
  • Евстюнин Григорий Анатольевич
RU2685297C2
Способ термической обработки деталей высокой точности 1981
  • Кремнев Леонид Стефанович
  • Холоднов Евгений Васильевич
  • Бусурина Ирина Александровна
  • Митауэр Сталина Яковлевна
  • Ионова Римма Никифоровна
  • Попова Ольга Всеволодовна
  • Сагадеева Тамара Георгиевна
SU1014925A1
СПОСОБ И СИСТЕМА ДЛЯ ЛАЗЕРНОГО УПРОЧНЕНИЯ ПОВЕРХНОСТИ ОБРАБАТЫВАЕМОЙ ДЕТАЛИ 2013
  • Габилондо, Амаия
  • Домингуэс, Хесус
  • Сорьяно, Карлос
  • Оканья, Хосе Луис
RU2661131C2
Способ упрочнения деревообрабатывающего инструмента, изготовленного из хромистых и хромо-кремнистых сталей 2022
  • Маринин Евгений Анатольевич
  • Тиханов Александр Владимирович
RU2792101C1
СПОСОБ ЛАЗЕРНОГО УПРОЧНЕНИЯ ПОВЕРХНОСТИ ДЕТАЛЕЙ 2017
  • Бирюков Владимир Павлович
  • Гудушаури Элгуджа Георгиевич
  • Татаркин Денис Юрьевич
  • Фишков Алексей Анатольевич
RU2684176C2
СПОСОБ МОДИФИКАЦИИ ПОВЕРХНОСТЕЙ МЕТАЛЛОВ ИЛИ ГЕТЕРОГЕННЫХ СТРУКТУР ПОЛУПРОВОДНИКОВ 2011
  • Качемцев Александр Николаевич
  • Киселев Владимир Константинович
  • Скупов Владимир Дмитриевич
  • Торохов Сергей Леонидович
RU2502153C2

Иллюстрации к изобретению RU 2 276 191 C1

Реферат патента 2006 года СПОСОБ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ МЕТАЛЛОВ

Изобретение относится к области машиностроения и может быть использовано для поверхностного упрочнения металлов. Технический результат: повышение прочностных характеристик упрочненной поверхности и повышение производительности обработки. Лазерный луч поляризуется в полосу с переменной интенсивностью излучения и сканирование вдоль этой полосы производится так, что при нагреве обрабатываемого участка поверхности последовательно реализуются стадии изотермической выдержки этого участка на различных температурных уровнях, а изменение температуры осуществляется с оптимальными для данного металла скоростями. 1 з.п. ф-лы, 2 ил., 1 табл.

Формула изобретения RU 2 276 191 C1

1. Способ поверхностного упрочнения металлов путем изменения уровня теплового воздействия на обрабатываемую поверхность, включающий локальную закалку сканирующим лазерным лучом, отличающийся тем, что производят поляризацию лазерного луча в полосу с переменной интенсивностью излучения в пределах пятна воздействия на обрабатываемую поверхность и сканируют с фиксированной скоростью, обеспечивающей последовательную изотермическую выдержку обрабатываемого участка на различных температурных уровнях, при этом степень поляризации устанавливают согласно принятым условиям теплового воздействия при указанной скорости сканирования, а изменение температуры осуществляют с оптимальными для упрочняемого металла скоростями.2. Способ по п.1, отличающийся тем, что скорость сканирования назначают экспериментально по величине микротвердости в упрочненных слоях металла, соответствующей заданному структурному состоянию.

Документы, цитированные в отчете о поиске Патент 2006 года RU2276191C1

RU 2004603 A1, 15.12.1993
СПОСОБ УПРОЧНЕНИЯ СТАЛЬНЫХ КОЛЕС 1997
  • Чкалов Л.А.
  • Квасов М.И.
  • Шарадзе О.Х.
  • Кулемин В.Н.
RU2127768C1
СПОСОБ ОБРАБОТКИ РЕЗЬБОВОГО ИЗДЕЛИЯ 1992
  • Аванесов Валерий Степанович[Ru]
  • Авербух Борис Александрович[Ru]
  • Ашигян Дмитрий Григорьевич[Ru]
  • Абубакиров Андрей Владимирович[Ru]
  • Зейналов Рахиб Рашид Оглы[Az]
  • Гаджиев Илхам Шамил Оглы[Az]
  • Парфененко Сергей Николаевич[Ru]
  • Будагов Октай Исмаил Оглы[Az]
RU2047661C1
СПОСОБ УПРОЧНЕНИЯ ИНСТРУМЕНТОВ И ДЕТАЛЕЙ И УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2001
  • Кукушкин Н.Н.
RU2197541C1

RU 2 276 191 C1

Авторы

Рузанов Феликс Иванович

Пыриков Павел Геннадьевич

Даты

2006-05-10Публикация

2004-10-05Подача