Изобретение относится к трубопрокатному производству, а именно к способам продольной прокатки труб на оправке с использованием технологической смазки.
Известен способ прокатки труб (Ф.А.Данилов и др. «Горячая прокатка труб», М., «Металлургия», 1962, с.174), при котором внутрь трубы непосредственно перед прокаткой забрасывают твердый порошкообразный смазочный материал (поваренную соль или смесь поваренной соли и графита).
Недостатком указанного способа является то, что твердую солевую смазку забрасывают внутрь трубы непосредственно перед ее деформацией на оправке. При этом смазка, не расплавившись до конца, действует в начальный период как абразив, что приводит к образованию на оправке задиров и неровностей, а это ведет к снижению стойкости оправок и качества внутренней поверхности труб.
Наиболее близким техническим решением, принятым за прототип, является способ продольной прокатки труб (а.с. СССР №1018733, В 21 В 17/04, опубл. 23.05.83, БИ №19), заключающийся в том, что перед деформацией засыпают в нагретую гильзу твердый смазочный легкоплавкий материал и выдерживают 1,0-2,5 секунды до его размягчения.
Недостатком данного способа является то, что при засыпке смазочного материала он распределяется неравномерно, на переднем конце гильзы образуется горка, а за указанный период времени не всякий смазочный материал, например на основе фосфатов, успевает полностью расплавиться.
Это не позволяет более или менее равномерно распределить смазку по периметру переднего конца гильзы, что дестабилизирует условия прокатки, повышает трение на контакте «оправка - деформируемый металл» и таким образом снижает стойкость оправок и качество внутренней поверхности труб.
Кроме того, недостатком указанного способа является то, что он предполагает подачу смазочного материала только на передний конец гильзы и создание хороших условий работы оправки лишь в самом начале прокатки. При прокатке остальной части гильзы, а это около 3/4 ее длины, трение на контакте «оправка - деформируемый металл» резко возрастает, что снижает стойкость оправок, качество внутренней поверхности труб и ограничивает область применения данного способа.
Техническая задача, решаемая изобретением, заключается в повышении стойкости оправок и качества внутренней поверхности труб.
Поставленная техническая задача решается за счет того, что в способе продольной прокатки труб, включающем деформацию нагретой гильзы ручьевыми валками на оправке и подачу в нее перед прокаткой плавкого смазочного материала, согласно изобретению плавкий смазочный материал распределяют по внутренней поверхности гильзы, используя состав плавкого смазочного материала, обеспечивающий его полное расплавление до начала процесса прокатки, а время полного расплавления плавкого смазочного материала корреспондируют за счет его состава и физико-химических свойств со временем перемещения гильзы от момента подачи плавкого смазочного материала до начала процесса продольной прокатки.
Кроме того, в качестве плавкого смазочного материала используют мета- и полифосфаты щелочных металлов с добавками, а в качестве добавок - борную кислоту, тетраборат натрия, борный ангидрид. А также в качестве плавкого смазочного материала используют полифосфат натрия с добавкой борной кислоты.
Сущность изобретения заключается в том, что при подаче плавкого смазочного материала в идущую от прошивного стана гильзу его распределяют по всей внутренней поверхности гильзы, например, распылением с помощью специальной сопловой насадки или с использованием других приспособлений. При этом время полного расплавления плавкого смазочного материала корреспондируют за счет его состава и физико-химических свойств со временем перемещения гильзы от момента подачи смазочного материала до начала процесса продольной прокатки.
Распределение твердого смазочного материала в сочетании с подбором его химического состава в зависимости от времени перемещения гильзы от момента подачи смазочного материала до начала процесса прокатки позволяет обеспечить переход смазочного материала из твердого агрегатного состояния в жидкое. При этом по всей внутренней поверхности гильзы образуется жидкий смазочный слой примерно одинаковой толщины, что, в свою очередь, обеспечивает стабильный режим гидродинамического трения на контакте «оправка -деформируемый металл» и гарантирует надежное разделение трущихся поверхностей при минимальном трении на протяжении всего времени процесса прокатки. В результате стойкость оправок и качество внутренней поверхности повышаются, а также появляется возможность использования предлагаемого способа на длиннооправочных станах горячей прокатки, например на непрерывном и раскатном.
В качестве плавкого смазочного материала могут использоваться, например, мета- и полифосфаты щелочных металлов с добавками. В качестве добавок могут быть использованы борная кислота, тетраборат натрия, борный ангидрид и другие материалы, которые за счет комплекса своих физических характеристик, таких как температура плавления, теплопроводность, вязкость, могут влиять на скорость расплавления и вязкость смазочного материала.
Предлагаемый способ был опробован на станах продольной прокатки труб СПП1 и СПП2, установленных последовательно в линии трубопрокатного агрегата 140 ОАО «Синарский трубный завод». Прокатка проводилась на трубах размером 146×7,0 мм из углеродистой стали марки Д в ручьевых валках на короткой оправке. Диаметр цилиндрического пояска оправок для стана СПП1 составлял 133 мм, для стана СПП2 - 131 мм. Температура гильзы перед станом СПП1 составляла 1140°С, перед станом СПП2 - 1080°С. В качестве плавкого смазочного материала использовали полифосфат натрия с добавкой борной кислоты для снижения температуры расплавления.
Перед станом СПП1 в гильзу (t=1140°C) распыляли полифосфат натрия с 5-процентной добавкой борной кислоты, и за время ее транспортировки до места начала продольной прокатки, составляющее 4 секунды, данный смазочный состав полностью расплавлялся. В стан продольной прокатки СПП1 задавали гильзу, вся внутренняя поверхность которой была полностью покрыта расплавленным смазочным материалом. Этим обеспечивался гидродинамический режим трения на контакте «оправка - деформируемый металл» на всем протяжении процесса прокатки гильзы. Расход смазочного материала составил 60-80 г/м2.
Перед станом СПП2 в гильзу (t=1080°С) распыляли полифосфат натрия с 10-процентной добавкой борной кислоты, так как температура гильзы была на 60° ниже, чем перед станом СПП1, и требовалось снижение температуры расплавления смазочного материала. Время транспортировки гильзы также составляло 4 секунды. При этих условиях смазочный состав полностью расплавлялся. В стан СПП2 задавали гильзу, вся внутренняя поверхность которой была покрыта полностью расплавленным смазочным материалом. При этом обеспечивался гидродинамический режим трения на контакте «оправка - деформируемый металл» на всем протяжении процесса прокатки гильзы. Расход смазочного материала также составил 60-80 г/м2.
Анализ полученных данных показал, что значительно снизилась (более чем в 1,5 раза) величина продольной разностенности труб, прокатанных с использованием предлагаемого способа. При этом стойкость оправок возросла примерно в 1,35-1,5 раза, а выход годного увеличился на 20-25% за счет снижения количества труб, произведенных с различными внутренними дефектами.
Использование прелагаемого способа продольной прокатки труб позволяет повысить эффективность использования плавкого смазочного материала, увеличить стойкость оправок в 1,35-1,5 раза и улучшить качество выпускаемых труб, а также применять его на раскатных и непрерывных станах.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ГОРЯЧЕКАТАНЫХ БЕСШОВНЫХ ТРУБ | 2014 |
|
RU2587610C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГОРЯЧЕКАТАНЫХ БЕСШОВНЫХ ТРУБ | 2012 |
|
RU2505365C1 |
Способ изготовления горячекатаных бесшовных труб | 2020 |
|
RU2745011C1 |
ПРОДУКТ ДЛЯ ГОРЯЧЕЙ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ | 2013 |
|
RU2536820C1 |
Способ продольной прокатки труб | 1982 |
|
SU1018733A1 |
Способ горячей продольной прокатки труб | 1987 |
|
SU1438866A1 |
Способ винтовой прошивки и устройство для его осуществления | 2016 |
|
RU2647393C1 |
Способ продольной прокатки труб | 1987 |
|
SU1454525A1 |
СПОСОБ НЕПРЕРЫВНОЙ ПРОКАТКИ ИЗДЕЛИЙ | 2009 |
|
RU2385194C1 |
Способ винтовой прошивки и устройство для его осуществления | 2022 |
|
RU2814881C2 |
Изобретение относится к трубопрокатному производству, а именно к способу продольной прокатки труб на оправке с использованием технологической смазки. Способ продольной прокатки труб включает деформацию нагретой гильзы ручьевыми валками на оправке и подачу в нее перед прокаткой плавкого смазочного материала, при этом плавкий смазочный материал распределяют по внутренней поверхности гильзы, используя состав плавкого смазочного материала, обеспечивающий его полное расплавление до начала процесса прокатки, а время полного расплавления плавкого смазочного материала корреспондируют за счет его состава и физико-химических свойств со временем перемещения гильзы от момента подачи плавкого смазочного материала до начала процесса продольной прокатки, в качестве плавкого смазочного материала используют мета- и полифосфаты щелочных металлов с добавками, а в качестве добавок - борную кислоту, тетраборат натрия, борный ангидрид, в частности в качестве плавкого смазочного материала используют полифосфат натрия с добавкой борной кислоты. Изобретение обеспечивает повышение стойкости оправок и качества внутренней поверхности труб. 2 з.п. ф-лы.
Способ продольной прокатки труб | 1982 |
|
SU1018733A1 |
Смазка для горячей обработки металлов | 1981 |
|
SU1004459A1 |
Смазка для иглы при горячем прессовании металлов | 1975 |
|
SU520391A1 |
Смазка для горячего прессования металлов | 1977 |
|
SU696047A1 |
Устройство для нанесения смазки на внутреннюю поверхность гильзы | 1980 |
|
SU897325A1 |
Способ нанесения смазки на внутреннюю поверхность длинномерных полых заготовок | 1983 |
|
SU1068195A1 |
СМАЗКА ДЛЯ ГОРЯЧЕЙ ОБРАБОТКИ МЕТАЛЛОВ | 0 |
|
SU191729A1 |
СПОСОБ РЕМОНТА УПРОЧНЕННЫХ ИНДУКЦИОННОЙ ЗАКАЛКОЙ КОЛЕНЧАТЫХ ВАЛОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ | 1999 |
|
RU2158191C1 |
ИНВЕРСИОННЫЙ ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ КОРДАНУМА (ТАЛИНАЛОЛА) | 1998 |
|
RU2167418C2 |
Авторы
Даты
2007-04-10—Публикация
2005-08-03—Подача