СПОСОБ ПОЛУЧЕНИЯ КОНСТРУКЦИОННО-ТЕПЛОИЗОЛЯЦИОННОГО СТРОИТЕЛЬНОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМОСИЛИКАТНЫХ МИКРОСФЕР Российский патент 2012 года по МПК C04B28/26 C04B38/00 C04B111/40 

Описание патента на изобретение RU2455253C1

Изобретение относится к области строительной индустрии и, в частности, может быть использовано для получения конструкционно-теплоизоляционных и теплоизоляционных строительных материалов при изготовлении элементов зданий и сооружений в промышленном и гражданском строительстве.

В современной промышленности при изготовлении теплоизоляционных материалов используются различные наполнители. Так, в последнее время стали применяться микросферы: искусственные и отходы производства ТЭЦ - полые газонаполненные стеклокристаллические алюмосиликатные микросферы размером в среднем от 20-50 мкм до 400-500 мкм, которые образуются при высокотемпературном факельном сжигании топлива. Алюмосиликатные микросферы благодаря свойственному им набору химических и физических характеристик нашли применение в производстве различных композиционных материалов, в частности легковесных наполнителей при изготовлении ограждающих сборных и монолитных изделий и конструкций. Изделия с добавлением микросфер обладают повышенной износостойкостью, легкостью, при этом высокой прочностью и низкой теплопроводностью.

Известен способ получения ячеистых строительных материалов, включающий получение пены в смесителе, перемешивание компонентов с использованием пенообразователя, жидкого стекла, формование полученной смеси, выдержку, распалубку, при этом используют жидкое стекло из микрокремнезема с силикатным модулем 2-4, причем сначала 1-7 частей указанного жидкого стекла с плотностью 1,18-1,20 г/см3 перемешивают с пенообразователем в высокоскоростном смесителе принудительного действия до 10-12-кратного вспенивания, затем при постоянном перемешивании в полученную пену вводят 35-42 части указанного жидкого стекла плотностью 1,35-1,45 г/см3, полученную пену минерализуют микрокремнеземом - отходом производства кремния, а после распалубки осуществляют сушку (Патент РФ №2209803, МПК С04В 38/10, В28С 5/00, 2002 г.).

Известна сырьевая смесь для изготовления теплоизоляционно-конструкционного материала, содержащая, масс.%: жидкое натриевое стекло из микрокремнезема с силикатным модулем 2÷3 и плотностью 1,2÷1,5 г/см3 62,5-64,1, микрокремнезем 23,1-25, кремнефтористый натрий 6,25-6,4, золу-унос от сжигания обезвоженных осадков очистных сооружений промстоков Усть-Илимского ЛПК в печах с кипящим слоем 6,25÷6,4 (Патент РФ №2317961, МПК С04В 28/26, 2006 г.).

Известен способ получения материалов на основе жидкого стекла, включающий смешение жидкого стекла с водой и добавкой с последующим смешением с заполнителем, часть которого предварительно измельчена, формование изделий и их термообработку, при этом вначале измельчают смесь, состоящую из жидкого стекла, кварцевого песка, добавки и воды, затем добавляют немолотый заполнитель, а отформованные изделия подвергают термообработке при температуре 300-360°С (Патент РФ №2109710, МПК С04В 38/00, 1998 г.).

Наиболее близким к предлагаемому способу является способ изготовления поризованных теплоизоляционных материалов на основе жидкого стекла и несортированного боя технического стекла в условиях тепловой обработки при повышенном значении рН среды и интенсивном растворении аморфного кремнезема, сопровождающимся увеличением кремнеземистого модуля жидкого стекла, в основу которого был положен способ сухой минерализации пены. Снижение размеров пор до определенного предела достигается путем более интенсивного перемешивания пеномассы на этапе ее минерализации. Способ включает вспенивание пены в смесителе, перемешивание компонентов с использованием жидкого стекла и пенообразователя типа, совместимого со щелочной средой, в качестве которого использовались ПАВ катионового типа - оксид алкилдиметиламина или катамин, формование полученной смеси, предварительную сушку, расформовку, термообработку, выдержку (Диссертация на соискание ученой степени кандидата технических наук на тему: «Поризованный теплоизоляционный материал на основе стеклобоя», автор Зайцева Е.И., Московский государственный строительный университет, 1998 г. (05.23.05 - Строительные материалы и изделия).

Известен теплоизоляционный состав, содержащий в качестве связующего жидкое минеральное стекло, в качестве огнеупорного наполнителя полые микросферы на основе кремнийсодержащего вещества и в качестве агента отверждения и структурообразования соль щелочного металла. Компоненты состава последовательно смешивают и готовят композицию, которую, в свою очередь разливают по формам. Образцы формуют при 300-400°С, остужают и извлекают из формы (Патент РФ №2098379, МПК С04В 28/24, С04В 111:20, 1997 г.).

Указанный теплоизоляционный материал по своим характеристикам не обладает необходимыми свойствами по теплопроводности при указанной плотности и прочности.

Задача настоящего изобретения заключается в разработке способа получения теплоизоляционного материала с высокой относительной механической прочностью, при снижении средней плотности и теплопроводности, без использования дорогостоящих компонентов смеси.

Цель изобретения - получение конструкционно-теплоизоляционного прочного, экологически чистого негорючего материала.

Указанная цель достигается тем, что в известном способе получения ячеистых конструкционно-теплоизоляционных строительных материалов, включающем перемешивание алюмосиликатных микросфер и вяжущего - жидкого стекла, формование, термообработку, выдержку, остывание, используется жидкое стекло натриевое и/или калиевое с модулем 1-4 и плотностью 1,1-1,47 г/см3, а формование осуществляется с удельной нагрузкой 1,5-5,0 МПа, при этом термообработка включает два этапа: I этап термоудара - путем повышения температуры до 100-130°С за 7-15 минут, выдержку - при 100-130°С 7-15 минут, II этап термоудара - путем подъема температуры до 300-550°С в течение 10-30 минут, выдержку - 40-80 минут и остывание в печи в течение 5-8 часов, при следующем соотношении компонентов: алюмо-силикатные микросферы 65-97% об., указанное жидкое стекло 3-35% об.

Приготовление материала осуществляется следующим образом.

Пример

Алюмосиликатные микросферы в количестве 65÷97% по объему и вяжущее вещество на основе минерализованных пен из жидкого стекла или жидкое стекло (натриево-калиевое), (натриевое [Na2O(SiO2)n] и/или калиевое [K2O(SiO2)n]) с модулем 1÷4 и плотностью 1,1÷1,47 г/см3 в количестве 35÷3% по объему, соответственно, перемешивают в смесителе до образования однородной массы. Полученную смесь формуют с удельной нагрузкой 0,1÷7,0 МПа, производят термообработку, включающую повышение температуры до 100÷130°С за 7÷15 минут (термоудар - 1 этап), выдержку при 100÷130°С в течение 7÷15 минут, подъем температуры до 300÷550°С в течение 10÷30 минут (термоудар - II этап), выдержку - 40÷80 минут, остывание в печи в течение 5÷8 часов.

В таблицах 1, 2 представлены данные по результатам испытаний.

Предлагаемый способ изготовления конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер позволяет получить материал с повышенными прочностными и теплозащитными характеристиками при его средней плотности 400-700 кг/м3.

Таблица 1 Составы по примерам Алюмосиликатные микросферы, масс.% Жидкое стекло, масс.% Давление, пресс, МПа Плотность, кг/м3 Раствор силиката калия [K2O(SiO2)n] Раствор силиката натрия [Na2O(SiO2)n] Пример 1 70 30 - 32 540 Пример 2 85 - 15 16 450 Пример 3 65 35 - 32 600 Пример 4 65 - 35 50 700

Таблица 2 Составы по примерам Теплофизические показатели готового продукта Теплопроводность, Вт/м·°С, при 25°С Плотность, кг/м3 Прочность при сжатии, МПа Морозостойкость (циклы) В сухом состоянии материала В условиях эксплуатационной влажности (20%) Пример 1 0,175 0,24 540 11,0 100 Пример 2 0,16 0,22 450 6,0 50 Пример 3 0,185 0,26 600 13,0 100 Пример 4 0,22 0,30 700 17,0 100 Прототип 0,26-0,30 - 400-500 2,0-6,8 -

Похожие патенты RU2455253C1

название год авторы номер документа
Способ получения конструкционно-теплоизоляционного материала 2016
  • Шоршева Ольга Витальевна
  • Левитин Сергей Вадимович
  • Погорелов Сергей Иванович
  • Григорьев Сергей Владимирович
RU2636718C1
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 2018
  • Бархатов Виктор Иванович
  • Добровольский Иван Поликарпович
  • Капкаев Юнер Шамильевич
  • Головачев Иван Валерьевич
RU2721557C1
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 2019
  • Добровольский Иван Поликарпович
  • Бархатов Виктор Иванович
  • Головко Александр Александрович
  • Кровяков Владимир Валерьевич
  • Капкаев Юнер Шамильевич
  • Головачев Иван Валерьевич
RU2721561C1
СМЕСЬ ДЛЯ ПЕНОБЕТОНА НА ОСНОВЕ НАНОСТРУКТУРИРОВАННОГО ВЯЖУЩЕГО (ВАРИАНТЫ), СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ПЕНОБЕТОНА (ВАРИАНТЫ) 2009
  • Лесовик Валерий Станиславович
  • Строкова Валерия Валерьевна
  • Череватова Алла Васильевна
  • Павленко Наталья Викторовна
RU2412136C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЕНОСИЛИКАТНОГО ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 1997
  • Быкова Э.В.
  • Коршунова Г.Х.
  • Дорофеев А.А.
RU2174967C2
Сырьевая смесь, способ изготовления и изделие строительной аэрированной керамики 2016
  • Дмитриев Константин Сергеевич
RU2621796C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ НА ОСНОВЕ КРЕМНЕЗЕМСОДЕРЖАЩЕГО СВЯЗУЮЩЕГО 2005
  • Кондратенко Александр Николаевич
  • Кривобородов Юрий Романович
  • Подосинников Олег Павлович
RU2283818C1
СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 2015
  • Поляков Вячеслав Сергеевич
  • Ильин Александр Александрович
  • Смирнов Андрей Анатольевич
  • Поляков Игорь Вячеславович
  • Ильин Александр Павлович
  • Киселев Артём Евгеньевич
RU2620676C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ПЕНОБЕТОНА НА НАНОСТРУКТУРИРОВАННОМ ПЕРЛИТОВОМ ВЯЖУЩЕМ (ВАРИАНТЫ) 2010
  • Строкова Валерия Валерьевна
  • Череватова Алла Васильевна
  • Жерновский Игорь Владимирович
  • Мирошников Евгений Владимирович
  • Павленко Наталья Викторовна
RU2447042C1
МИНЕРАЛЬНЫЙ ВСПЕНЕННО-ВОЛОКНИСТЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ 2014
  • Кисиль Игорь Александрович
RU2568199C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ КОНСТРУКЦИОННО-ТЕПЛОИЗОЛЯЦИОННОГО СТРОИТЕЛЬНОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМОСИЛИКАТНЫХ МИКРОСФЕР

Изобретение относится к строительной индустрии и, в частности, может быть использовано для получения теплоизоляционно-конструкционных и теплоизоляционных строительных материалов при изготовлении элементов зданий и сооружений в промышленном и гражданском строительстве. В способе получения конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер, включающем перемешивание алюмосиликатных микросфер и вяжущего - жидкого стекла, формование, термообработку, выдержку, остывание, используют в качестве наполнителя жидкое стекло натриевое и/или калиевое с модулем 1-4 и плотностью 1,1-1,47 г/см3, осуществляют формование с удельной нагрузкой 1,5-5 МПа, термообработку, включающую: I этап термоудара - путем повышения температуры до 100-130°С за 7-15 минут, выдержку - при 100-130°С 7-15 минут, II этап термоудара - путем подъема температуры до 300-550°С в течение 10-30 минут, выдержку - 40-80 минут и остывание в печи в течение 5-8 часов, при следующем соотношении компонентов, % об.: алюмосиликатные микросферы 65-97, указанное жидкое стекло 3-35. Технический результат - получение негорючего материала с высокой прочностью при снижении средней плотности и теплопроводности. 1 пр., 2 табл.

Формула изобретения RU 2 455 253 C1

Способ получения конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер, включающий перемешивание алюмосиликатных микросфер и вяжущего - жидкого стекла, формование, термообработку, выдержку, остывание, отличающийся тем, что в качестве наполнителя используют жидкое стекло натриевое и/или калиевое с модулем 1-4 и плотностью 1,1-1,47 г/см3, осуществляют формование с удельной нагрузкой 1,5-5 МПа, термообработку, включающую: I этап термоудара - путем повышения температуры до 100-130°С за 7-15 мин, выдержку - при 100-130°С 7-15 мин, II этап термоудара - путем подъема температуры до 300-550°С в течение 10-30 мин, выдержку - 40-80 мин и остывание в печи в течение 5-8 ч, при следующем соотношении компонентов, об.%:
алюмосиликатные микросферы 65-97 указанное жидкое стекло 3-35

Документы, цитированные в отчете о поиске Патент 2012 года RU2455253C1

ТЕПЛОИЗОЛЯЦИОННЫЙ СОСТАВ 2004
  • Быкова Эмма Валеевна
  • Дорофеев Андрей Алексеевич
  • Коршунова Гульзара Хамитовна
  • Савкин Геннадий Григорьевич
RU2285680C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ 1998
  • Скрипникова Н.К.
  • Волокитин Г.Г.
  • Шлыков Д.В.
  • Шмидт В.Г.
  • Петроченко В.В.
RU2200138C2
ТЕПЛОИЗОЛЯЦИОННЫЙ СОСТАВ 1994
  • Быкова Э.В.
  • Коршунова Г.Х.
RU2098379C1
СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНОЙ ПАНЕЛИ 1999
  • Быкова Э.В.
  • Коршунова Г.Х.
  • Дорофеев А.А.
  • Ларичева Н.Ф.
RU2173752C2
СПОСОБ ПОЛУЧЕНИЯ СТРОИТЕЛЬНОГО МАТЕРИАЛА 2008
  • Дюкова Элина Юрьевна
  • Иванов Сергей Васильевич
  • Борисеев Андрей Валентинович
  • Кузнецов Валерий Анатольевич
RU2363685C1
СПОСОБ ПОЛУЧЕНИЯ СТРОИТЕЛЬНОГО МАТЕРИАЛА 2007
  • Фащевский Александр Болеславович
  • Фащевский Александр Александрович
  • Фащевский Михаил Александрович
RU2333176C1
СИЛИКАТНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО ПЕНОМАТЕРИАЛА 1999
  • Быкова Э.В.
  • Коршунова Г.Х.
  • Дорофеев А.А.
  • Ларичева Н.Ф.
RU2171241C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОИЗОЛЯЦИОННО-КОНСТРУКЦИОННОГО МАТЕРИАЛА 2006
  • Лебедева Татьяна Анатольевна
  • Белых Светлана Андреевна
  • Малунова Валентина Михайловна
  • Малунова Галина Михайловна
  • Трофимова Ольга Васильевна
RU2317961C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ 1993
RU2109710C1
СПОСОБ ПОЛУЧЕНИЯ ЯЧЕИСТЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ 2002
  • Карнаухов Ю.П.
  • Кудяков А.И.
  • Белых С.А.
  • Лебедева Т.А.
  • Зиновьев А.А.
RU2209803C1
Ступень осевой турбины 1988
  • Гродзинский Владимир Лазаревич
  • Фролов Борис Иванович
  • Выговская Светлана Павловна
SU1550184A1

RU 2 455 253 C1

Авторы

Бессонов Игорь Вячеславович

Сапелин Андрей Николаевич

Кордюков Николай Петрович

Даты

2012-07-10Публикация

2011-03-01Подача