Изобретение относится к переработке алюмокремниевого сырья, в том числе отходов от сжигания коры и осадков водоочистки, с целью получения низкоконцентрированного композиционного коагулянта-флокулянта (НККФ), который может быть использован в технологии очистки воды, например, для очистки лигносодержащих промышленных потоков и природных вод.
Известен способ получения неорганического алюмокремниевого флокулянта-коагулянта, в котором алюмокремниевое сырье обрабатывают в водной среде серной кислотой, отделяют жидкую от твердой фазы и обезвоживают жидкую фазу. Алюмокремниевый флокулянт-коагулянт используют в виде порошка в количестве 50-100 мг/дм3 или водного 0,1-2,0% раствора в количестве 25-100 мг/дм3 (пат. РФ №2388693, МПК С01В 33/26 (2006.01), C01F 7/74 (2006.01), C02F 1/52 (2006.01), опубл. 10.05.2010).
Недостатками способа аналога являются многостадийность процесса при получении продукта, сложное аппаратное обеспечение, энергозатратность.
Известен также способ переработки алюмосиликатного сырья, при котором на 1-й стадии необходимо смешение исходных компонентов - сульфата алюминия, безводного сульфата натрия, кислого сульфата натрия, либо сульфата алюминия, кислого сульфата натрия, либо сульфата алюминия, безводного сульфата натрия и 96%-ной концентрированной серной кислоты. На 2-й стадии к полученной смеси при перемешивании добавляют моносил с модулем 1,5-3,0 при следующем соотношении компонентов соответственно, мас. ч.: 3,4:2,1:1,4:1, либо мас. ч.: 3,4:1,4:1, либо мас. ч.: 3,4:2,9:0,6:1 (пат. РФ №2447021, МПК С01В 33/26 (2006.01), C02F 1/52 (2006.01), C01F 7/74 (2006.01), опубл. 2 10.04.2012).
Недостатками данного способа являются сложность получения алюмокремниевого флокулянта-коагулянта, многостадийность подготовки сухой композиции, необходимость использования в виде сырья товарных химически чистых реагентов и дорогостоящего оборудования.
Наиболее близким к заявленному изобретению является способ получения композиционного коагулянта-флокулянта на основе нефелинового концентрата и подовой золы, образующейся при сжигании коры и осадков систем водоочистки, в состав которых входят активные компоненты Al2O3, SiO2, TiO2, СаО, Fe2O3, включающий обработку исходного сырья водным раствором 5% серной кислоты при массовом соотношении сухой части к растворителю 1:100 (Смирнова А.И. Влияние алюмосодержащих минеральных компонентов техногенного происхождения на формирование органоминеральных структур на основе сульфатного лигнина, автореферат дисс. на соиск. уч. степ. канд. хим. наук, гл. 2, Санкт-Петербург, 2013, стр. 6). В качестве исходного сырья для получения коагулянта-флокулянта используют только один из видов минерального сырья или отходов: нефелиновый концентрат или подовую золу. Эффективность очистки при использовании этих коагулянтов-флокулянтов на основе нефелинового сырья и подовой золы составляет 80-99%, причем реагент на основе золы является менее эффективным.
Недостатком этого способа является увеличенный расход невоспроизводимого нефелинового сырья или подовой золы для получения конечного продукта в виде низкоконцентрированного композиционного коагулянта-флокулянта, а также невозможность использования совместно вторичных продуктов технологического процесса для обеспечения максимально замкнутого цикла использования реагента для очистки водных потоков на территории промышленных площадок.
Положительным техническим результатом заявленного решения является создание композиции сухой смеси нефелинового сырья и подовой золы, образующейся при сжигании коры и осадков систем водоочистки, которые при совместном действии сохраняют качество очищенной воды от лигносодержащих и гуминовых примесей в технологии очистки воды, при этом обеспечивают повторное использование отходов в виде зольных продуктов от сжигания коры и осадков водоподготовки.
Поставленная задача решается тем, что в способе получения низкоконцентрированного композиционного коагулянта-флокулянта осуществляют процесс исключительно в водной среде при низких концентрациях дисперсий основных компонентов в виде нефелинового сырья и подовой золы, образующейся от сжигания коры или осадков систем водоочистки, которые содержат в своем составе активные компоненты Al2O3, SiO2, TiO2, СаО, Fe2O3, а в процессе составления сухой композиции осуществляют смешения в массовых процентах нефелиновое сырье 1-99% и зольные продукты 1-99% с последующим растворением сухой дисперсии в 5-10% серной кислоте в массовом соотношении (2-5):(95-98) сухой части к растворителю в течение 2-8 часов.
Новым технологическим решением является изменение подготовки реагентов при одновременном сохранении степени удаления органических и минеральных примесей, а также снижение абсолютного количества коагулянта-флокулянта для процесса очистки природных и сточных вод. Это решение реализуют путем простого и быстрого способа получения низкоконцентрированного композиционного коагулянта-флокулянта с заранее заданным соотношением содержания активных компонентов в пересчете на оксиды алюминия и кремния из природного сырья и зольных продуктов, содержащих SiO2, Al2O3, TiO2, СаО, Fe2O3. Предлагаемый способ основан на принципах «зеленых» технологий и является экологически безопасным процессом. Преимуществом данного способа является возможность его использования в технологии водоочистки в максимально замкнутом режиме по использованию коагулянта при условии сжигания осадков с последующей регенерацией минеральных компонентов для обеспечения процесса очистки воды. Замкнутый цикл заключается в том, что в сухую композицию на стадии подготовки реагента вводят подовую золу от сжигания коры и осадков водоочистки, содержащие SiO2, Al2O3, TiO2, СаО, Fe2O3, и далее согласно способу осуществляется растворение этой композиции 5-10% серной кислотой в течение 2-8 часов. Данный способ позволяет расширить ассортимент реагентов для технологии водоочистки и решить проблемы импорт замещения в этой сфере хозяйственной деятельности. Изобретение иллюстрируется следующими примерами.
Пример 1. Способ-прототип осуществляют путем замены традиционного коагулянта сульфата алюминия на нефелиновое сырье (НС), содержащее SiO2, Al2O3, TiO2, СаО, Fe2O3, путем растворения сухого нефелинового сырья (100% (мас.) в 5-10% серной кислоте в течение 2-8 часов. Концентрация основных компонентов в растворе коагулянта-флокулянта оценивается по активному алюминию и кремнию для выбора оптимальной дозы реагента.
Степень растворения при времени обработки 4-8 часов в 5-10% серной кислоте составляет соответственно 75-77% (мас.) (фиг. 2).
Эффективность удаления лигногуминовых веществ (ЛГВ) по величине ХПК в оптимальных диапазонах рН составляет 80-99%, что позволяет обеспечить требования качества воды по этому показателю на выпуске.
Пример 2. Способ-прототип получения НККФ в условиях примера 1 отличается тем, что в качестве минеральной композиции для получения НККФ используется подовая зола, которая образуется при сжигании коры и осадков сточных вод и далее аналогично примеру 1. В данном случае эффективность снижения ХПК достигает 80-95% при оптимально выбранных условиях пробного коагулирования в режиме отстаивания. При обеспечении процесса фильтрации в контактном режиме эффективность увеличивается и обеспечивает требования на сброс или потребителю.
Пример 3. Заявленный способ отличается от прототипов 1 и 2 тем, что в качестве минеральной композиции используется смесь на основе нефелинового сырья (НС) и подовой золы (ПЗ) от сжигания коры и осадков водоочистки, содержащих SiO2, Al2O3,. TiO2, СаО, Fe2O3, в заданном массовом соотношении сухой части реагентов НС:ПЗ(1-99):(1-99) в зависимости от требуемой концентрации активных компонентов в составе НККФ по вариантам их подготовки.
Вариант 1. Получение НККФ при соотношении компонентов 99% (мас.) НС и 1% - ПЗ. Сухую композицию растворяют в 5-10% серной кислоте в течение 2-8 часов. Концентрацию рабочих компонентов в растворе НККФ оценивают по активному алюминию и кремнию для выбора дозы реагента.
Степень растворения от времени обработки 5% серной кислотой (кривая 1) и 10% серной кислотой (кривая 1') представлена на фиг. 1. В промежутке времени от 2 до 8 часов растворимость сухой дисперсии композиции существенно не изменяется. Выход реагента при растворении в 5% серной кислоте составляет 78% (мас.) (фиг. 2, кривая 1).
Графическое изображение эффективности удаления ЛГВ, которые обуславливают цветность воды, представлено на фиг. 3. При оптимальной дозе реагента (кривая 1) эффективность удаления ЛГВ по величине ХПК в оптимальных диапазонах рН составляет 98-99,5%), что позволяет обеспечить требования качества воды для выпуска. Фиг. 4 демонстрирует зависимость остаточных концентраций алюминия при использовании НККФ (кривая 1), где они не превышают 0, 04 мг/дм3. Дозу реагентов целесообразно определять с помощью модифицированного метода пробного коагулирования [Дягилева, А.Б. Перспективы использования физико-химической очистки для специфических потоков // Водоочистка - 2011. - №7. - С. 29-30] или для природной воды - по ГОСТ 31868-2012.
Вариант 2 получения НККФ в условиях примера 3 отличается тем, что соотношение компонентов в сухой композиции по массе составляет 1% - НС и 99% - ПЗ. Далее аналогично варианту 1. В данном случае степень растворения от времени обработки растворами серной кислоты 5% (кривая 2) и 10% (кривая 2') представлены на фиг. 1. Выход реагента при использовании 5% кислоты составляет 68% (мас.) (фиг. 2).
Эффективность очистки воды по ХПК при оптимально выбранных дозах и условиях процесса составляет 95-98% (фиг 3, кривая 2), остаточные концентрации алюминия не превышают 0, 04 мг/дм3 (фиг. 4, кривая 2).
Вариант 3 получения НККФ отличается от варианта 2 тем, что в составе сухой минеральной композиции используют 10% (мас.) НС и 90% (мас.) подовой золы (ПЗ), далее аналогично варианту 2. Эффективность растворимости (фиг. 2) в 5-10% серной кислоте к моменту времени 4-8 часов составляет 72-75%. Дисперсия нерастворимой части НККФ является замутнителем и при объемном дозировании реагента не снижает эффективность удаления примесей, способствует интенсификации процессов очистки (фиг. 3, кривая 5 без замутнителя, кривая 5' с замутнителем). Остаточные концентрации алюминия не более 0, 04 мг/дм3 (фиг. 4, кривая 3).
Вариант 4 получения НККФ отличается от варианта 2 тем, что в составе сухой композиции используют в массовом соотношении НС:П3 - 50:50, далее аналогично варианту 2. Выход реагента при растворении в 5-10% серной кислоте составляет 80-83% (мас.) (фиг. 2), с учетом перераспределения в составе TiO2, СаО, Fe2O3 требуется уточнение доз регента по методу пробного коагулирования. Эффективность очистки при оптимальных дозах реагента в диапазоне рН от 4 до 7 составляет 80-85%. Остаточные концентрации алюминия также не превышают 0, 04 мг/дм3 (фиг. 4, кривая 4).
Часть результатов по получению НККФ на основе природных и техногенных минеральных продуктов и их смеси с выходом активных компонентов в рабочий раствор сведена в таблицу.
Данное описание и примеры рассматриваются как материал, иллюстрирующий изобретение, сущность которого и объем патентных притязаний определены в нижеследующей формуле изобретения совокупностью существенных признаков и их эквивалентами.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ МОДИФИКАЦИИ ЛИГНИНА ПУТЕМ ЗОЛЬ-ГЕЛЬ СИНТЕЗА С МИНЕРАЛЬНЫМИ КОМПОНЕНТАМИ | 2016 |
|
RU2658907C2 |
СПОСОБ ПОЛУЧЕНИЯ ГИБРИДНОГО АЛЮМОКРЕМНИЕВОГО РЕАГЕНТА ДЛЯ ОЧИСТКИ ПРИРОДНЫХ И ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД И СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД ЭТИМ РЕАГЕНТОМ | 2017 |
|
RU2661584C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКРЕМНИЕВОГО КОАГУЛЯНТА-ФЛОКУЛЯНТА | 2009 |
|
RU2421400C1 |
СПОСОБ ПОЛУЧЕНИЯ СТИМУЛЯТОРОВ РОСТА ИЗ ВОДНОЙ ВЫТЯЖКИ КОРОСОДЕРЖАЩЕЙ МАССЫ | 2019 |
|
RU2734634C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКРЕМНИЕВОГО ФЛОКУЛЯНТА-КОАГУЛЯНТА И СПОСОБ ОЧИСТКИ С ЕГО ПОМОЩЬЮ ВОДЫ | 2008 |
|
RU2388693C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО КОАГУЛЯНТА | 2019 |
|
RU2720790C1 |
Способ получения алюмокремниевого коагулянта-флокулянта | 2021 |
|
RU2763356C1 |
Способ получения коагулянта на основе полиоксисульфата алюминия, коагулянт, полученный указанным способом | 2015 |
|
RU2617155C1 |
НЕФЕЛИНОВЫЙ КОАГУЛЯНТ | 2005 |
|
RU2283286C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО КОАГУЛЯНТА | 2021 |
|
RU2761205C1 |
Изобретение относится к способу переработки нефелинового сырья и подовой золы с получением низкоконцентрированного композиционного коагулянта-флокулянта. Способ получения предусматривает смешение в массовых процентах нефелинового сырья 1-99 мас.% и зольных продуктов 1-99 мас.%, последующее растворение сухой дисперсии в 5-10% серной кислоте при массовом соотношении сухой дисперсии к растворителю (2-5):(95-98) в течение 2-8 часов. Предлагаемый способ является экологически безопасным и основанным на использовании вторичного сырья минерального происхождения. 4 ил., 1 табл., 4 пр.
Способ получения низкоконцентрированного композиционного коагулянта-флокулянта, осуществляемый в водной среде при низких концентрациях дисперсий основных компонентов в виде нефелинового сырья и подовой золы, образующейся от сжигания коры или осадков систем водоочистки, которые содержат в своем составе активные компоненты Al2O3, SiO2, TiO2, СаО, Fe2O3, отличающийся тем, что на смешение подают в массовых процентах нефелиновое сырье 1-99 мас. % и зольные продукты 1-99 мас. % с последующим растворением сухой дисперсии в 5-10% серной кислоте при массовом соотношении сухой дисперсии к растворителю (2-5):(95-98), соответственно, в течение 2-8 часов.
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛЯНТА | 1992 |
|
RU2039711C1 |
СПОСОБ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД | 1993 |
|
RU2049735C1 |
СПОСОБ ПОЛУЧЕНИЯ КОАГУЛИРУЮЩЕ-ФЛОКУЛИРУЮЩЕГО РЕАГЕНТА И СПОСОБ ОБРАБОТКИ ВОДЫ | 1997 |
|
RU2131849C1 |
Зольно-кислотный коагулянт для очистки сточных вод | 1991 |
|
SU1820901A3 |
Способ получения коагулянта изшлАМОВ ВОдООчиСТКи | 1979 |
|
SU842040A2 |
Воздухораспределитель системы Матросова | 1946 |
|
SU77315A1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКРЕМНИЕВОГО ФЛОКУЛЯНТА-КОАГУЛЯНТА | 2015 |
|
RU2588535C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОКРЕМНИЕВОГО КОАГУЛЯНТА-ФЛОКУЛЯНТА | 2009 |
|
RU2421400C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КОАГУЛЯНТА ДЛЯ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД | 1997 |
|
RU2122974C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОСОДЕРЖАЩЕГО КОАГУЛЯНТА | 1992 |
|
RU2053200C1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННЫХ ОСАДКОВ | 1994 |
|
RU2057725C1 |
Смирнова А.И | |||
Влияние алюмосодержащих минеральных компонентов техногенного происхождения на формирование органоминеральных структур на основе сульфатного лигнина, автореф | |||
дисс | |||
на соиск | |||
уч | |||
степ | |||
канд | |||
хим | |||
наук, Санкт-Петербург, 2013, глава 2 | |||
Дягилева А.Б | |||
и др | |||
Особенности формирования поверхностного заряда органоминеральной структуры на основе сульфатного лигнина и алюмосодержащих компонентов, Физикохимия растительных полимеров, Материалы V межд | |||
конф., Архангельск, 2013, с | |||
Способ приготовления сернистого красителя защитного цвета | 1915 |
|
SU63A1 |
Авторы
Даты
2018-06-04—Публикация
2016-09-29—Подача