КОРРОЗИОННОСТОЙКАЯ МАРТЕНСИТНОСТАРЕЮЩАЯ СТАЛЬ Российский патент 2001 года по МПК C22C38/52 

Описание патента на изобретение RU2169790C2

Изобретение относится к области металлургии, в частности к производству высокопрочных коррозионностойких мартенситностареющих сталей криогенного назначения, предназначенных для изготовления паяно-сварных конструкций энергетических установок, работоспособных при температурах от -253 до 500oC.

Известна коррозионностойкая мартенситностареющая сталь криогенного назначения следующего химического состава, мас.%:
углерод - 0,01-0,03
хром - 9,5-12,0
никель - 7,0-10,0
молибден - 0,5-1,9
кобальт - 3,9-6,0
кальций - 0,01-0,08
иттрий - 0,01-0,3
ванадий - 0,03-0,3
церий - 0,005-0,3
железо - остальное
(автор. свид. СССР N1014970, C 22 C 38/52).

Сталь имеет достаточно высокий уровень механических свойств в температурном интервале от -253 до 500oC, обусловленный формированием в процессе упрочняющей термической обработки мелкодисперсной аустенитно-мартенситной структуры (структуры "микродуплекс").

Недостатком известной стали применительно к паяно-сварным конструкциям криогенного назначения является существенное понижение механических свойств, вызванное огрублением аустенитно-мартенситной структуры в процессе замедленного нагрева под пайку, характерного для пайки сложных конструкций из высоколегированных сталей и сплавов.

Известна высокопрочная коррозионностойкая мартенситностареющая сталь следующего химического состава, мас.%:
углерод - 0,01-0,05
хром - 10,0-13,0
никель - 4,0-6,6
молибден - 1,3-3,5
кобальт - 4,0-7,5
марганец - 0,2-0,5
кремний - 0,2-1,5
титан - 0,3-0,5
алюминий - 0,2-0,35
медь - 0,5-1,5
диспрозий - 0,03-0,1
неодим - 0,05-0,08
кальций - 0,05-0,08
церий - 0,01-0,05
железо - остальное
(автор. свид. СССР N 1165719, кл. С 22 С 38/52).

Эта сталь менее чувствительна к огрублению аустенитно-мартенситной структуры в процессе нагрева под пайку, однако склонна к образованию охрупчивающих включений карбидных и интерметаллидных фаз преимущественно по границам зерен, что существенно понижает работоспособность паяно-сварных конструкций энергетических установок криогенного назначения.

Задача изобретения - создание высокопрочной коррозионностойкой мартенситностареющей стали для изготовления паяно-сварных конструкций, работоспособных при высоких нагрузках в интервале температур от -253oC до 500oC.

Задача решена за счет того, что коррозионностойкая мартенситностареющая сталь, содержащая углерод, хром, никель, молибден, кобальт, марганец, кремний, кальций, церий и железо, дополнительно содержит вольфрам, ванадий и азот при следующем соотношении компонентов, мас.%:
углерод - 0,01-0,04
хром - 9,5-13,5
никель - 6,0-9,0
молибден - 0,8-4,0
кобальт - 2,5-7,8
марганец - 0,1-0,9
кремний - 0,1-0,75
ванадий - 0,03-0,3
азот - 0,01-0,08
кальций - 0,001-0,05
церий - 0,001-0,05
вольфрам - 0,02-0,3
железо - остальное.

Дополнительное комплексное легирование вольфрамом и ванадием повышает теплостойкость стали и предотвращает образование в процессе замедленного нагрева под пайку охрупчивающих зернограничных включений карбидных фаз.

Дополнительное легирование азотом в условиях замедленного нагрева под пайку интенсифицирует диффузионные процессы формирования и упрочнения ревертированного аустенита обратного мартенситного превращения, что позволяет сохранить оптимальную для высокопрочных хладостойких сталей мелкодисперсную аустенитно-мартенситную структуру. При этом упрочнение азотом в заданных пределах легирования является достаточным, чтобы исключить из химического состава титан, алюминий и медь, упрочняющее действие которых сопровождается понижением вязкости и хладостойкости высокопрочных сталей.

Технический результат - повышение механических свойств высокопрочностных мартенситностареющих сталей, подвергаемых высокотемпературной пайке.

Химические составы исследованных плавок предложенной стали приведены в таблице 1.

Из стали предложенного состава были изготовлены паяно-сварные конструкции. Пайку осуществляли серебряным припоем при температуре 780-810oC. После пайки проводили термическую обработку по режиму: обработка холодом при -70oC в течение 2 часов, старение при 500oC 3 часа.

Механические свойства стали после пайки и термообработки представлены в таблице 2.

Анализ таблицы 2 показал достаточно высокие прочностные свойства и ударную вязкость после пайки предложенной стали, позволяющие использовать ее в энергетических установках при высоких нагрузках в интервале температур от -253 до 500oC.

Похожие патенты RU2169790C2

название год авторы номер документа
КОРРОЗИОННОСТОЙКАЯ ЛИТЕЙНАЯ СТАЛЬ 1998
  • Новиков В.И.
  • Пестов Ю.А.
  • Семенов В.Н.
  • Дмитриев В.В.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Каторгин Б.И.
  • Чванов В.К.
  • Громыко Б.М.
  • Головченко С.С.
  • Каблов Е.Н.
  • Петраков А.Ф.
  • Еланский Г.Н.
  • Сосонкин О.М.
  • Савченко Е.Г.
  • Большаков В.Б.
RU2169788C2
КОРРОЗИОННОСТОЙКАЯ МАРТЕНСИТНОСТАРЕЮЩАЯ СТАЛЬ 2013
  • Новиков Виктор Иванович
  • Недашковский Константин Иванович
  • Громыко Борис Михайлович
  • Дмитриев Владимир Владимирович
  • Ильичева Нина Алексеевна
  • Логачева Елена Викторовна
RU2532785C1
Литейная коррозионно-стойкая свариваемая криогенная сталь и способ ее получения 2020
  • Новиков Виктор Иванович
  • Пономарев Юрий Валентинович
  • Недашковский Константин Иванович
RU2778709C2
КОРРОЗИОННОСТОЙКАЯ МАРТЕНСИТНОСТАРЕЮЩАЯ ЛИТЕЙНАЯ СТАЛЬ 1998
  • Новиков В.И.
  • Пестов Ю.А.
  • Семенов В.Н.
  • Дмитриев В.В.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Каторгин Б.И.
  • Чванов В.К.
  • Громыко Б.М.
  • Головченко С.С.
  • Каблов Е.Н.
  • Петраков А.Ф.
  • Еланский Г.Н.
  • Сосонкин О.М.
  • Савченко Е.Г.
  • Большаков В.Б.
RU2169789C2
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 1998
  • Семенов В.Н.
  • Каблов Е.Н.
  • Качанов Е.Б.
  • Петраков А.Ф.
  • Козловская В.И.
  • Бирман С.И.
  • Батурина А.В.
  • Шалькевич А.Б.
  • Сысоева И.Б.
  • Пестов Ю.А.
  • Кукин Е.А.
  • Харламов В.Г.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Каторгин Б.И.
  • Чванов В.К.
  • Головченко С.С.
  • Сигаев В.А.
  • Евмененко Ф.Ф.
RU2175684C2
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЁ 2002
  • Каблов Е.Н.
  • Шалькевич А.Б.
  • Кривоногов Г.С.
  • Самченко Н.А.
  • Рыльников В.С.
  • Старова Л.Л.
RU2221895C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ КОРРОЗИОННО-СТОЙКИХ МАРТЕНСИТНОСТАРЕЮЩИХ СТАЛЕЙ 2013
  • Новиков Виктор Иванович
  • Недашковский Константин Иванович
RU2535889C1
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 1998
  • Семенов В.Н.
  • Каблов Е.Н.
  • Качанов Е.Б.
  • Петраков А.Ф.
  • Бирман С.И.
  • Батурина А.В.
  • Шалькевич А.Б.
  • Пестов Ю.А.
  • Недашковский К.И.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Каторгин Б.И.
  • Чванов В.К.
  • Сигаев В.А.
  • Кукин Е.А.
  • Харламов В.Г.
  • Козыков Б.А.
  • Головченко С.С.
RU2176283C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПАЯНЫХ КОНСТРУКЦИЙ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 1999
  • Семенов В.Н.
  • Новиков В.И.
RU2156678C1
Мартенситно-стареющая сталь 2020
  • Мазничевский Александр Николаевич
  • Сприкут Радий Вадимович
RU2738033C1

Иллюстрации к изобретению RU 2 169 790 C2

Реферат патента 2001 года КОРРОЗИОННОСТОЙКАЯ МАРТЕНСИТНОСТАРЕЮЩАЯ СТАЛЬ

Изобретение относится к металлургии, в частности к производству высокопрочных коррозионностойких мартенситностареющих сталей криогенного назначения для изготовления паяно-сварных конструкций энергетических установок, работоспособных при температурах от -253 до 500oC. Техническим результатом изобретения является повышение прочностных свойств и ударной вязкости стали после ее пайки. Заявленная сталь содержит ингредиенты в следующем соотношении, мас.%: углерод 0,01 - 0,04; хром 9,5 - 13,5; никель 6,0 - 9,0; молибден 0,8 - 4,0; кобальт 2,5 - 7,8; марганец 0,1 - 0,9; кремний 0,1 - 0,75; ванадий 0,03 - 0,3; азот 0,01 - 0,08; кальций 0,001 - 0,05; церий 0,001 - 0,05; вольфрам 0,02 - 0,3; железо - остальное. 2 табл.

Формула изобретения RU 2 169 790 C2

Коррозионностойкая мартенситностареющая литейная сталь, содержащая углерод, хром, никель, молибден, кобальт, марганец, кремний, кальций, церий и железо, отличающаяся тем, что она дополнительно содержит вольфрам, ванадий и азот при следующем соотношении компонентов, мас.%:
Углерод - 0,01 - 0,04
Хром - 9,5 - 13,5
Никель - 6,0 - 9,0
Молибден - 0,8 - 4,0
Кобальт - 2,5 - 7,8
Марганец - 0,1 - 0,9
Кремний - 0,1 - 0,75
Ванадий - 0,03 - 0,3
Азот - 0,01 - 0,08
Кальций - 0,001 - 0,05
Церий - 0,001 - 0,05
Вольфрам - 0,02 - 0,3
Железо - Остальное

Документы, цитированные в отчете о поиске Патент 2001 года RU2169790C2

Мартенситностареющая нержавеющая сталь 1983
  • Березовская Вера Владимировна
  • Векслер Юрий Генрихович
  • Звигинцев Николай Васильевич
  • Рудычев Анатолий Сергеевич
  • Галкин Павел Николаевич
SU1165719A1
СТАЛЬ 1992
  • Дегтярев А.Ф.
  • Валов Е.Г.
  • Шепилов Н.Б.
  • Меньшова Н.Ф.
  • Вирченко М.А.
  • Веремеенко И.С.
  • Нагорный М.В.
  • Гидулянов Э.И.
  • Бугаев А.М.
  • Кириченко Е.П.
RU2009263C1
ДИСПЕРСИОННО-ТВЕРДЕЮЩАЯ МАРТЕНСИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 1994
  • Хултин-Стигенберг Анна[Se]
RU2099437C1
Мартенситностареющая сталь 1975
  • Кнороз Марианна Марковна
  • Калугин Александр Серафимович
  • Григорьева Мария Матвеевна
  • Колчин Борис Петрович
  • Макаревич Владимир Антонович
SU558064A1
Сталь 1979
  • Фридман Владимир Соломонович
  • Ашмарина Галина Ильинична
  • Степанов Валерий Георгиевич
  • Русинович Юрий Иванович
  • Иванов Николай Алексеевич
  • Лапин Петр Георгиевич
  • Силаева Ольга Ивановна
  • Сироткин Сергей Александрович
  • Бзиава Валерий Георгиевич
  • Тащилов Василий Степанович
  • Цукров Ефим Александрович
SU905316A1
US 3925064, 09.12.1975
GB 1551029, 22.08.1979
СПОСОБ ПЕРЕРАБОТКИ ШРОТА ПОДСОЛНЕЧНИКА 2020
  • Ковшарь Владимир Моисеевич
  • Терлецкая Наталия Константиновна
RU2744047C1
Форвакуумная ловушка 1978
  • Пронин Олег Дмитриевич
SU773307A1

RU 2 169 790 C2

Авторы

Новиков В.И.

Пестов Ю.А.

Семенов В.Н.

Дмитриев В.В.

Деркач Г.Г.

Мовчан Ю.В.

Каторгин Б.И.

Чванов В.К.

Громыко Б.М.

Головченко С.С.

Каблов Е.Н.

Петраков А.Ф.

Еланский Г.Н.

Сосонкин О.М.

Савченко Е.Г.

Большаков В.Б.

Даты

2001-06-27Публикация

1998-11-04Подача